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The generalized Sturmian method and inelastic scattering
of fast electrons
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The generalized Sturmian method for solving the many-electron Schrddinger equation is
reviewed. This method yields rapidly convergent solutions directly, without the use of the SCF
approximation. As a simple illustrative example, differential cross sections are calculated for
inelastic scattering of fast electrons by atoms and ions in the 2-electron isoelectronic series.

KEY WORDS: generalized Sturmians, inelastic scattering, excitation, quantum theory,
atomic structure

1. Introduction

The generalized Sturmian method [1-9] is a form of direct configuration interac-
tion, with a special prescription for constructing optimal configurations. The method
offers several advantages. The kinetic energy term disappears from the secular equation;
the nuclear attraction term is already diagonal; the optimal Slater exponents are given
automatically; a rapidly convergent solution to the many-electron Schrédinger equation
can be obtained directly, without the use of the SCF approximation; and excited states
can be calculated accurately [7].

Generalized Sturmians are similar to the familiar Sturmian basis sets of atomic and
molecular physics [10-15] in that they are solutions to a Schrédinger equation with a
weighted “basis potential”, the weighting factor being chosen in such a way that all the
members of the basis set correspond to the same value of the eBergythe case of
generalized Sturmian basis sets, all the members of a set satisfy

1 N
[—5 3 V24 B, Vo) — E}m () =0, (1)
j=1

wherex is a 3V-dimensional vector representing the coordinates of the electrong,and
is a weighting factor especially chosen so that all the members of the basis set correspond
to the same energy.
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The method can be used to study the electronic structure and properties both of
atoms and of molecules [7]. When the method is applied to atoms, it is convenient to let
Vo(X) be the attractive potential of the nucleus:

N
Z
Vo) = =3 = )
j=1 Fj

Then solutions to equation (1) can be built up from the familiar hydrogen-like atomic
spin-orbitals:

%) = Rur)Yin (65, 6)) {28; , 3
wherexa andg are spin functionsy,, is a spherical harmonic, and
20,r\
Ry (r) =an< e r) e @M E(+1—n|2 4 22Q,r/n),

_20./m¥ | A+
Nt =" D \nn—1=D1" )

In equation (4)F (a|b|x) = 1+ax/b+a(a+1)x?/(b(b+1)2!)+- - - is a confluent
hypergeometric function whil€, = 8,Z is an effective charge. The hydrogen-like
atomic spin-orbitals(,, (j) satisfy the one-electron Schrédinger equation:

1 2 QU l Qv 2 7y —
[_Evf - + 5(7> ]XM(J) =0. (5)
If we let

Xu(l) Xu’(l) Xu”(l)
1 Xu (2) Xu’(z) XM”(Z)

N - ®

¢v(x) = |XMX;L’XM” | : :
Xu (N) Xu’(N) XM”(N)

then from equation (5) we have

N , ,
1 2 _ Qv 1 Qu Qv 1 Qv
|:—;§Vj:|¢v(X)—|:r—l—§<7) +r_2_§<7) +"']¢U(X)

271 11
= |:_,3v VO(X) - (_2 + — + 2 + .- >:|¢U(X)7 (7)
n n n

where

2
E=_&(i+i+n1 +> ®)
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Thus, provided that we choose the effective chadgdand henceg, = Q,/Z)in
such a way that equation (8) is satisfied, the configuragi@r) will satisfy equation (1).
If we introduce the parametefg andR, with the definitions

2
p
EE—?O 9)
and
1 1 1 12
Ru5<ﬁ+ﬁ+ﬁ+“'> ) (10)

then the subsidiary condition (8) can be rewritten in the form:

pPo = Qva (11)

The parametepy is the same for all the generalized Sturmian configurations in a basis
set (since all correspond to the same energy), while the effective cliargend the
radicalR, characterize a particular configuratia,(x).

2. Potential-weighted orthonor mality

Generalized Sturmian basis functions, constructed in the way just described, obey
potential-weighted orthonormality relations. To see this, consider two different func-
tions, both corresponding to the same energy, obeying respectively

1 N
[5 Vit E}% (X) = By Vo(X)y (X) (12)
j=1
and
1 N
[ 2 D Vi+E } P (X) = B Vo(X)dy (X). (13)
j=1
Then
1 N
/ dr 9100 [5 D Vi+ E}ﬁv 00 =B / dr ¢7, 00 Vo) (14)
j=1
and

1 N
/ dx ¢ (X) [5 > Vit E}dw(X) = Bv / dx @7 ) Vo(X) v (X). (15)
j=1

If we take the complex conjugate of (15) and subtract it from (14), making use of
the Hermiticity of the operator on the left, we obtain

By — o) / dx 6 (0 Vo), (x) = O, (16)
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so that if8, # 8.,

/mwwww%w=o (17)

Orthogonality with respect to the minor quantum numbers, on which the energy
does not depend, follows from the orthonormality of the spin functions and the spherical
harmonics. The normalization of the basis set can be established from the fact that the
familiar atomic spin-orbitals, defined by equations (3) and (4), obey

21 v
/ i -2 (18)
Making use of the Slater—Condon rules and equation (11) we have:
2
(/mmuW%w }:/dmmu)| ———Q%? %. (19)
uCv v

Thus, the potential-weighted orthonormality relation becomes:

pé

8u v 2. 20
iy (20)

/mww%w%w=—

3.  Thesecular equation

Having constructed our basis set, we would like to use it to solve the many-electron
Schrédinger equation:

N
[—%ZV?—FV(X)—E}MX) =0, (21)
j=1
where
V(X) = Vo(x) + V'(x) (22)

and whereV’(x) is the interelectron repulsion potential

VI(x) = ZZ; (23)

i>j j=1

Expandingy (x) in terms of our basis, we have

N
Z[_% S Vv - E}MX)BV =0. (24)
j=1

Y
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Since each configuration in the basis satisfies (1), equation (24) can be rewritten in the
form

> VO = B,V (0] (0B, =0. (25)

v

Multiplying (25) by a conjugate function from the basis set and integrating over the
coordinates, making use of the potential-weighted orthonormality relations yields:

Z |:/dx ¢j’ (X)V(X)¢v (X) + p(z)(sv/,v]Bv =0. (26)
We now introduce the definition:

1
Ty, = o / dx ¢, )V ()9, (X). (27)

The minus in this definition is motivated by the fact thatx) is predominantly an at-
tractive potential. We divide by because whei (x) involves only Coulomb forces,
T, ., is then independent gfy. With this definition of7,, ,, equation (26) becomes

Z [Tv’,v - p05v’,v]Bv = 0. (28)
v
The matrix7,, , consists of two terms, one representing nuclear attraction, and the
other interelectronic repulsion. The nuclear attraction term is diagonal because of the
potential-weighted orthonormality relation (20):

Tvq y = _i / dX¢:,(X)V0(X)¢U(X) = Sv/,v% = (Su/,uZRu- (29)
’ Do

v

Thus, finally, the generalized Sturmian secular equation foNaglectron atom
becomes

Z [TL:/,U + ZRVSV’,U - p08v’,u]Bv = O, (30)
where
1 A |
T, =—— f dr gl (0 D> D =gy (X). (31)
po inj j=1 i

The secular equation (30) has several interesting features. The kinetic energy term
has disappeared; the nuclear attraction term is diagonal; and the roots are not energies,
but values of the parametggp, which is related to the energy by equation (9).

4. Inelastic scattering of fast electrons

As a simple example to illustrate the generalized Sturmian method, we can apply
it to the inelastic scattering of fast electrons by atoms and ions. The following formula
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for the differential inelastic scattering cross section in the Born approximation was first
derived by Bethe [16]. In atomic units,

do Ak’ N
S A-Xjaf*
i (kq4>‘/dx;é Vi

In equation (32)k is the momentum of the incident electrdeis the momentum of the
inelasticly scattered electron, whitgis the momentum transfered to the scatterer. The
initial and final states of the scatterer are represented respectivglydnydy,. If AE is

the positive energy difference betwegn andv, then conservation of energy requires
that

2

(32)

k% = k? — 2AE, (33)
while conservation of momentum yields the requirement
k—k'=q. (34)
Thus,
g> = (K=K - (k= K) = 2k? — 2AE — 2kv/k? — 2AE cosb, (35)
where

. !
kk'
In order to calculate the differential cross section, we can use the generalized Stur-

mian method to evaluatgg, v, and AE and substitute them into equations (32), (33)
and (35). For example, let us consider inelastic scattering of fast electrons by atoms
and ions of the two-electron isoelectronic series: He, IBe#H, B3, C*, etc. For
simplicity, we shall use the approximation where the wave function is represented by
a single configuration. (Higher accuracy could, of course, be obtained by using many
configurations.) Then the singlet ground state has the form

cosf =

(36)

1
Yo X X1s (Xl)le(XZ)E[a(l),B(Z) — B(Da(2)], (37)
where
1
x1s(X1) = ﬁQg/zefQOr. (38)

The effective charg®, characterizing the ground state configuration can be found
from the secular equation (30). Since we are approximating the state by a single config-
uration, the secular equation reduces to [5,7]

1 1
po=ZRo+Tyo=2 171" 0.441942 (39)
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whereZ is the nuclear charge. Then from equation (11) we have
00=2% — 7 _ 0312500 (40)
Ro
If we approximate singlet excited states by a single configuration then we can write

1
Yy X E[Xls’(xl))(nlm (X2) + Jum (X0 x15 62 [[€ (DB = BD(D)],  (41)

where
3/26- 0t
X1 (X1) = 0, , (42)
f
while x,.;,» can be written in the form
Xnim (X2) = Yi (Ro)e™@2/" ™ Cyrh. (43)

k
The matrix element in equation (32) then becomes:

2 2
) 1 .
/ dr > €Miygy, = = / dxy / APy 3 €9 s, (X) ey O62)
j=1 \/E Jj=1

X [Xls/ (X1) Xnlm (X2) + Xnlm (Xl)Xls’ (XZ)] . (44)
If I # 0, this reduces to

2
/ de ) €Piyop, = V2 / o1 1 (Xa) xav (X0) / d®xz €972 X1, (X2) Xuim (X2). (45)
j=1

We now introduce the expansion of a plane wave in terms of spherical harmonics
and spherical Bessel functions:

elq 2 = =4 ZI .]l(qr2) Z Ylm Ylm (46)

m=—I

From (42), (43), (46), and from the orthonormality of the spherical harmonics, we
have

/ PBrp €972 1 (X2) Xt (X2)
= 4\/_| Y 3/2 Z Ck/ dr2 r2 ]l(qu)e (QO+Q711/’1)V2 (47)

Integrals of the form

Jei(q, ¢) E/o dr r*ji(qgrye " (48)
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Table 1
Jei(q, &) = [g° drr€e™t" ji(gr).
l J1 J2.1 J3 Ja,
0 1 2¢ 232 -¢% 24(%-q?
?+¢2 (g2 +¢H? (q%+ 23 (q°+¢>*
1 2 8¢ 89(5¢° — 4°)
g%+ ¢?)? (g% +¢?)3 @%+¢)*
) 8 484°¢
(q%2+¢?)8 (g% + ¢2)4
3 4&13

(g2 424

are easy to evaluate [7]. The first few of these integrals are shown in table 1. They obey
the recursion relation

0
JK+1,I(‘]7 é‘) = _E K,l(qv {), (49)
and the integrald; 1 ; have the general form
2'q!
Ji410(q, §) = @t (50)

Equations (49) and (50) allow us to generate all the needed integrals. The remain-
ing factor in equation (45) is

8V2(Q0 Q)32
V2 / d®xq 15 (X0) X215 (X1) = <Q0+—0Qni>3'

In equations (42)—(51),, is the effective charge associated with the excited con-
figuration of the atom or ion. We can fin@,, by solving the secular equation (30),
which reduces to

(51)

po=2ZR,+ Tv/’v. (52)
Whenn = 2 andl = 1, this becomes [5]

1 1
po=Z. 1+ — 0201897 (53)

Q21 = 2% = 7 - 0180582 (54)
Raa

In this example, equation (43) becomes:

so that

A 5 5/2
Xo1n(X2) = Ym(Xz)eQ2’1r2/2ﬁ<%> ra, (55)
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so that, from (47)—(50),

g% , A 2 (021\"? 8¢
/dgxzéq X1s (X2) X21m (X2) =4ﬁI’Y1m(q)Q§/273( > ) G2+ 23 (56)
where
r=00+ 22 57

Forn =3 andl = 1[5]

1 1
po=Zy/7+ 35— 0107540 (58)

so that the effective charge is given by

031 = 2% — 70102021 (59)
Rs1

The differential cross sectiong4,, /d2 and dr3y, /d2, calculated in the way just
described, are exhibited in tables 2 and 3 for the 2-electron isoelectronic series. (The
cross sections are labeled with the subsdjiptz}.) Figures 1 and 2 show these cross
sections for He, fok = 100 andk = 150. One can see from these figures that as
increases, the differential cross sections become more sharply peaked in the region of
small 6. Calculation of the total cross sections shows that they decrease with increas-
ing k. Figure 3 shows @b1/dS2, dos10/d2 and drs10/dS2 for helium. One can see from
this figure that the differential cross sections for inelastic scattering of fast electrons de-
crease with increasing valuesf The total cross sections decreaseZdacreases and
also ask increases, as is illustrated in table 4.

For AL = 1, the inelastic scattering cross sections are very large at small values
of 6, while for other values oA L, the total cross sections are smaller and the differ-
ential cross sections are less sharply peaked at small valdesTdfis property can be
understood by considering equations (32) and (35), since we are considering the inelastic
scattering of fast electron®\E/k? <« 1, and we can expand the square root in equa-
tion (35) as a Taylor series in this parameter. If we do this, making use of the identity
1 — cost = 2sirf(6/2) we obtain

AE\?
g% ~ A(k*> — AE)sirt(0/2) + (T) cosh. (60)
Thus, for « 1 we have the approximate relationship:
AE\?
q? ~ k*0% + (7> , (61)

where, from equations (9), (39) and (52),

1
AE ~ S| (ZRo+Tgo) = (2R, +T,)°]. (62)



288 J. Avery / The generalized Sturmian method and inelastic scattering of fast electrons

Table 2

doz1,0
(09]

dop 1 +1
[s[9)

He

Lit

B2t

B3+

N5+

1.6474x 10°k’ cog 6,

8.2372x 10%’ sirP g,

kq?(q? + 6.7455°
1.4836x 107k’ cos 6,

kq?(q? + 6.74555
7.4180x 10°K’ sir? 6,

kq?(q? + 16.7875
3.2656x 10°k’ cos 6,

kq?(q% + 16.787°
1.6328x 168k’ sir 6,

kq2(q? + 313295
3.4511x 10%’ cos 4,

kq2(q? + 3132956
1.7256 x 10%’ sir? 6,

kq?(q2 +50.370)°
2.3224x 10'% cog ¢,

kq?(q% +50.370)5
1.1612x 100’ sir? 6,

kq?(q% + 739125
1.1509x 10'%’ cog 6,

kq?(q% + 739125
5.7545x 100’ sir? 6,

kq2(g? + 10195)6

kq2(g2? + 101956

Table 3
do3 1,0 do3 1+1
dQ dQ
7.3196x 10% (¢2 + 1.5079 cos 6,
kq?(q% + 5.3831)8
6.0770x 106¢' (¢2 + 3.93242 cog 0,
kq?(q2 + 133488
1.2858x 168k’ (¢° + 7.67032 cos 4,
kq?(q2 + 24.8698
1.3274x 10%/ (¢° + 125292 cos 4,
kq?(q? + 39.944)8
8.7958x 10%’ (¢° + 185742 cos 6,
kq?(q% + 585768
4.3114x 10'% (¢° 4 25.8032 cos 6,
kq?(q% + 80.7638

= 2cof 0q

He

Bt

B3+

c4t

N5+

Equation (61) tells us that whehis very smallg is also small, and it is then valid
to expand the plane wave in (32) in a Taylor series:
- . 1
e'q'xf':1+|q-xj—§(q-xj)2+---. (63)

The monopole term in this series vanishes in (32) because of the orthonormality between
Yo andy,. WhenAL = 1 for a transition, it is “dipole allowed”, and the leading
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-0.0002 ~0.0007 0 0.0001 0.0002
g —»

Figure 1. d 1 o/dS2 for helium as a function of the angtebetweerk andk’. Curve (a) corresponds to
k = 100, while (b) corresponds fo= 150. Atomic units are used throughout, except thetexpressed in
radians.
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1000 b

- 0.0002 -~0.0001 0 0.0001 0.0002
6 —»

Figure 2. d 1 41/dQ for helium as a function of. Curve (a) corresponds to= 100, while (b) corre-
sponds td = 150.
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10000

5000 r

-0.0002 _0.0001 0 0.0001 0.0002

g —»

Figure 3. This figure illustrates the decrease in magnitude of the differential cross sections for inelastic
scattering as the principal quantum number of the excited state increases. The figure he\ysod
(largest), d3 1,0/dS2 (smaller), and dy 1 o/d2 (smallest) for helium witlk = 100 atomic units.
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Table 4
Total cross sections in atomic units.

k op21+1(He)  op10He)  op141(Lit)  opq0Lih)

25 0.0037533 0.0013690 0.0011293 0.0005213

50 0.0011686 0.0003441 0.0003727 0.0001307

75 0.0005822 0.0001515 0.0001888 0.0000583
100 0.0003478 0.0000854 0.0001155 0.0000327
150 0.0001703 0.0000381 0.0000570 0.0000146
200 0.0001006 0.0000215 0.0000340 0.0000081

Figure 4. This figure illustrates the geometrylgfthe momentum of the incident fast electrdd, its
momentum after inelastic scattering, andhe momentum transfered to the scattefés.the angle between
k andk’, while 6, = arcsink’sing/q) is the angle betweeq andk. Because of the inelasticity of the

processk’ = vkZ — 2AE is slightly smaller thart.

contribution to (32) comes from the the dipole termqyx;, in (63). For small values aof

the factor] [ dx Zj e9%iyi 4,2 in (32) is then proportional tg2. This means that for
small values of andg, the cross sections corresponding to dipole-allowed transitions
are proportional tg 2, a factor which becomes extremely large in the forward direction.
By contrast,AL = 0 corresponds to a dipole-forbidden transition. In this case, the
leading term in the Taylor series is the quadrupole term, |drak Zj éq'xfwg;wUF is
proportional tog* wheng is small. This is sufficient to cancel thg* in the factor

(4k’ / (kq*)), with the result that the total cross section is small, and the differential cross
section is less sharply peaked in the forward direction. Differential cross sections for
the 1-electron isoelectronic series are shown for comparison in table 5, and these cross
sections also exhibit the characteristics just discussed.

5. Discussion

The generalized Sturmian method provides an interesting and fresh alternative to
the usual SCF-CIl methods for calculating the electronic structure and properties of atoms
and molecules. As we mentioned above, the method is a form of direct configuration
interaction, with a special prescription for the construction of optimum configurations.
In the present paper, we have used the single configuration approximation for the sake of
simplicity, but higher accuracy could be obtained by using more configurations. Usually
in a multiconfigurational generalized Sturmian calculation, a given degree of accuracy
can be obtained with far fewer configurations than are needed in conventional methods.
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Table 5
Cross sections for the 1-electron isoelectronic series.
n [ m doy 1 /A2
/78
> o 0 128’7
klq? + (32 /2)%18
288’ z10cog(6,)
2 1 0
kq?[q? + (32/2)218
144 z10sir?
5 1 41 A Sin‘(6y)
kq?lq? + (32/2)%1°
s o0 o 1024’ 78(3¢42 + (42 /3)%)?
243%[q2 + (4Z/3)2]8
s 1 o 8192710342 + (42/3)%)? co(6,)
72%q2[q% + (42/3)%]8
s 1 a1 4096’ 210342 + (42 /3)%)? sirt(64)
72%q2[q% + (42/3)%]8
s o2 o 32768’ Z1[1 + 3 cog20,)12
1968%[g2 + (47 /3)218
6552 Z12sir?(26,)
3 2 41
6561k[g2 + (4Z/3)2]8
6552 Z12sirf*(6,)
3 2 42

656%[q2 + (42/3)2]8
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