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The generalized Sturmian method and inelastic scattering
of fast electrons

John Avery

H.C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark 2100

Received 15 August 2000

The generalized Sturmian method for solving the many-electron Schrödinger equation is
reviewed. This method yields rapidly convergent solutions directly, without the use of the SCF
approximation. As a simple illustrative example, differential cross sections are calculated for
inelastic scattering of fast electrons by atoms and ions in the 2-electron isoelectronic series.
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1. Introduction

The generalized Sturmian method [1–9] is a form of direct configuration interac-
tion, with a special prescription for constructing optimal configurations. The method
offers several advantages. The kinetic energy term disappears from the secular equation;
the nuclear attraction term is already diagonal; the optimal Slater exponents are given
automatically; a rapidly convergent solution to the many-electron Schrödinger equation
can be obtained directly, without the use of the SCF approximation; and excited states
can be calculated accurately [7].

Generalized Sturmians are similar to the familiar Sturmian basis sets of atomic and
molecular physics [10–15] in that they are solutions to a Schrödinger equation with a
weighted “basis potential”, the weighting factor being chosen in such a way that all the
members of the basis set correspond to the same value of the energy,E. In the case of
generalized Sturmian basis sets, all the members of a set satisfy

[
−1

2

N∑
j=1

∇2
j + βνV0(x)− E

]
φν(x) = 0, (1)

wherex is a 3N-dimensional vector representing the coordinates of the electrons andβν

is a weighting factor especially chosen so that all the members of the basis set correspond
to the same energy.
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The method can be used to study the electronic structure and properties both of
atoms and of molecules [7]. When the method is applied to atoms, it is convenient to let
V0(x) be the attractive potential of the nucleus:

V0(x) = −
N∑

j=1

Z

rj

. (2)

Then solutions to equation (1) can be built up from the familiar hydrogen-like atomic
spin-orbitals:

χµ(j) = Rnl(rj )Ylm(θj , φj )

{
α(j)

β(j)
, (3)

whereα andβ are spin functions,Ylm is a spherical harmonic, and

Rnl(r)=N nl

(
2Qνr

n

)l

e−Qνr/nF (l + 1− n|2l + 2|2Qνr/n),

Nnl = 2(Qν/n)3/2

(2l + 1)!

√
(l + n)!

n(n− l − 1)! . (4)

In equation (4),F(a|b|x) ≡ 1+ax/b+a(a+1)x2/(b(b+1)2!)+· · · is a confluent
hypergeometric function whileQν = βνZ is an effective charge. The hydrogen-like
atomic spin-orbitalsχµ(j) satisfy the one-electron Schrödinger equation:[

−1

2
∇2

j −
Qν

rj

+ 1

2

(
Qν

n

)2]
χµ(j) = 0. (5)

If we let

φν(x) ≡ |χµχµ′χµ′′ . . . | ≡ 1√
N !

∣∣∣∣∣∣∣∣∣

χµ(1) χµ′(1) χµ′′(1) . . .

χµ(2) χµ′(2) χµ′′(2) . . .
...

...
...

χµ(N) χµ′(N) χµ′′(N) . . .

∣∣∣∣∣∣∣∣∣
, (6)

then from equation (5) we have[
−

N∑
j=1

1

2
∇2

j

]
φν(x)=

[
Qν

r1
− 1

2

(
Qν

n

)2

+ Qν

r2
− 1

2

(
Qν

n′

)2

+ · · ·
]
φν(x)

=
[
−βνV0(x)− Q2

ν

2

(
1

n2
+ 1

n′2
+ 1

n′′2
+ · · ·

)]
φν(x), (7)

where

E = −Q2
ν

2

(
1

n2
+ 1

n′2
+ 1

n′′2
+ · · ·

)
. (8)
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Thus, provided that we choose the effective chargeQν (and hence,βν = Qν/Z) in
such a way that equation (8) is satisfied, the configurationφν(x) will satisfy equation (1).
If we introduce the parametersp0 andRν with the definitions

E ≡ −p2
0

2
(9)

and

Rν ≡
(

1

n2
+ 1

n′2
+ 1

n′′2
+ · · ·

)1/2

, (10)

then the subsidiary condition (8) can be rewritten in the form:

p0 = QνRν . (11)

The parameterp0 is the same for all the generalized Sturmian configurations in a basis
set (since all correspond to the same energy), while the effective chargeQν and the
radicalRν characterize a particular configuration,φν(x).

2. Potential-weighted orthonormality

Generalized Sturmian basis functions, constructed in the way just described, obey
potential-weighted orthonormality relations. To see this, consider two different func-
tions, both corresponding to the same energy, obeying respectively[

1

2

N∑
j=1

∇2
j + E

]
φν(x) = βνV0(x)φν(x) (12)

and [
1

2

N∑
j=1

∇2
j + E

]
φν ′(x) = βν ′V0(x)φν ′(x). (13)

Then ∫
dx φ∗ν ′(x)

[
1

2

N∑
j=1

∇2
j + E

]
φν(x) = βν

∫
dx φ∗ν ′(x)V0(x)φν(x) (14)

and ∫
dx φ∗ν (x)

[
1

2

N∑
j=1

∇2
j + E

]
φν ′(x) = βν ′

∫
dx φ∗ν (x)V0(x)φν ′(x). (15)

If we take the complex conjugate of (15) and subtract it from (14), making use of
the Hermiticity of the operator on the left, we obtain

(βν − βν ′)

∫
dx φ∗ν ′(x)V0(x)φν(x) = 0, (16)
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so that ifβν �= βν ′, ∫
dx φ∗ν ′(x)V0(x)φν(x) = 0. (17)

Orthogonality with respect to the minor quantum numbers, on which the energy
does not depend, follows from the orthonormality of the spin functions and the spherical
harmonics. The normalization of the basis set can be established from the fact that the
familiar atomic spin-orbitals, defined by equations (3) and (4), obey∫

d3xj

∣∣χµ(j)
∣∣2 1

rj

= Qν

n2
. (18)

Making use of the Slater–Condon rules and equation (11) we have:∫
dx|φν(x)|2V0(x) = −

∑
µ⊂ν

∫
d3xj

∣∣χµ(xj )
∣∣2 Z

rj

= − Z

Qν

Q2
νR2

ν = −
p2

0

βν

. (19)

Thus, the potential-weighted orthonormality relation becomes:∫
dx φ∗ν ′(x)V0(x)φν(x) = −δν ′,ν

p2
0

βν

. (20)

3. The secular equation

Having constructed our basis set, we would like to use it to solve the many-electron
Schrödinger equation: [

−1

2

N∑
j=1

∇2
j + V (x)− E

]
ψ(x) = 0, (21)

where

V (x) = V0(x)+ V ′(x) (22)

and whereV ′(x) is the interelectron repulsion potential

V ′(x) =
N∑

i>j

N∑
j=1

1

rij

. (23)

Expandingψ(x) in terms of our basis, we have

∑
ν

[
−1

2

N∑
j=1

∇2
j + V (x)− E

]
φν(x)Bν = 0. (24)
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Since each configuration in the basis satisfies (1), equation (24) can be rewritten in the
form ∑

ν

[
V (x)− βνV (x)

]
φν(x)Bν = 0. (25)

Multiplying (25) by a conjugate function from the basis set and integrating over the
coordinates, making use of the potential-weighted orthonormality relations yields:∑

ν

[ ∫
dx φ∗ν ′(x)V (x)φν(x)+ p2

0δν ′,ν

]
Bν = 0. (26)

We now introduce the definition:

Tν ′,ν ≡ − 1

p0

∫
dx φ∗ν ′(x)V (x)φν(x). (27)

The minus in this definition is motivated by the fact thatV (x) is predominantly an at-
tractive potential. We divide byp0 because whenV (x) involves only Coulomb forces,
Tν ′,ν is then independent ofp0. With this definition ofTν ′,ν, equation (26) becomes∑

ν

[
Tν ′,ν − p0δν ′,ν

]
Bν = 0. (28)

The matrixTν ′,ν consists of two terms, one representing nuclear attraction, and the
other interelectronic repulsion. The nuclear attraction term is diagonal because of the
potential-weighted orthonormality relation (20):

T 0
ν ′,ν ≡ −

1

p0

∫
dx φ∗ν ′(x)V0(x)φν(x) = δν ′,ν

p0

βν

= δν ′,νZRν. (29)

Thus, finally, the generalized Sturmian secular equation for anN-electron atom
becomes ∑

ν

[
T ′ν ′,ν + ZRνδν ′,ν − p0δν ′,ν

]
Bν = 0, (30)

where

T ′ν ′,ν ≡ −
1

p0

∫
dx φ∗ν ′(x)

N∑
i>j

N∑
j=1

1

rij

φν(x). (31)

The secular equation (30) has several interesting features. The kinetic energy term
has disappeared; the nuclear attraction term is diagonal; and the roots are not energies,
but values of the parameterp0, which is related to the energy by equation (9).

4. Inelastic scattering of fast electrons

As a simple example to illustrate the generalized Sturmian method, we can apply
it to the inelastic scattering of fast electrons by atoms and ions. The following formula
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for the differential inelastic scattering cross section in the Born approximation was first
derived by Bethe [16]. In atomic units,

dσν

d%
≈

(
4k′

kq4

)∣∣∣∣∣
∫

dx

N∑
j=1

eiq·xj ψ∗0ψν

∣∣∣∣∣
2

. (32)

In equation (32),k is the momentum of the incident electron,k′ is the momentum of the
inelasticly scattered electron, whileq is the momentum transfered to the scatterer. The
initial and final states of the scatterer are represented respectively byψ0 andψν . If (E is
the positive energy difference betweenψν andψ0, then conservation of energy requires
that

k′2 = k2− 2(E, (33)

while conservation of momentum yields the requirement

k− k′ = q. (34)

Thus,

q2 = (
k− k′

) · (k− k′
) = 2k2 − 2(E − 2k

√
k2− 2(E cosθ, (35)

where

cosθ ≡ k · k′
kk′

. (36)

In order to calculate the differential cross section, we can use the generalized Stur-
mian method to evaluateψ0, ψν and(E and substitute them into equations (32), (33)
and (35). For example, let us consider inelastic scattering of fast electrons by atoms
and ions of the two-electron isoelectronic series: He, Li+, Be2+, B3+, C4+, etc. For
simplicity, we shall use the approximation where the wave function is represented by
a single configuration. (Higher accuracy could, of course, be obtained by using many
configurations.) Then the singlet ground state has the form

ψ0 ≈ χ1s(x1)χ1s(x2)
1√
2

[
α(1)β(2)− β(1)α(2)

]
, (37)

where

χ1s(x1) = 1√
π

Q
3/2
0 e−Q0r . (38)

The effective chargeQ0 characterizing the ground state configuration can be found
from the secular equation (30). Since we are approximating the state by a single config-
uration, the secular equation reduces to [5,7]

p0 = ZR0+ T ′0,0 = Z

√
1

1
+ 1

1
− 0.441942, (39)
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whereZ is the nuclear charge. Then from equation (11) we have

Q0 = p0

R0
= Z − 0.312500. (40)

If we approximate singlet excited states by a single configuration then we can write

ψν ≈ 1

2

[
χ1s ′(x1)χnlm(x2)+ χnlm(x1)χ1s ′(x2)

][
α(1)β(2)− β(1)α(2)

]
, (41)

where

χ1s ′(x1) = 1√
π

Q
3/2
nl e−Qnlr1, (42)

while χnlm can be written in the form

χnlm(x2) = Ylm(x̂2)e
−Qnlr2/n

∑
k

Ckr
k
2 . (43)

The matrix element in equation (32) then becomes:∫
dx

2∑
j=1

eiq·xj ψ0ψν = 1√
2

∫
d3x1

∫
d3x2

2∑
j=1

eiq·xj χ1s(x1)χ1s(x2)

×[
χ1s ′(x1)χnlm(x2)+ χnlm(x1)χ1s ′(x2)

]
. (44)

If l �= 0, this reduces to∫
dx

2∑
j=1

eiq·xj ψ0ψν =
√

2
∫

d3x1 χ1s(x1)χ1s ′(x1)

∫
d3x2 eiq·x2χ1s(x2)χnlm(x2). (45)

We now introduce the expansion of a plane wave in terms of spherical harmonics
and spherical Bessel functions:

eiq·x2 = 4π

∞∑
l=0

iljl(qr2)

l∑
m=−l

Ylm

(
q̂
)
Y ∗lm

(
x̂2

)
. (46)

From (42), (43), (46), and from the orthonormality of the spherical harmonics, we
have ∫

d3x2 eiq·x2χ1s(x2)χnlm(x2)

= 4
√

π ilYlm

(
q̂
)
Q

3/2
0

∑
k

Ck

∫ ∞
0

dr2 r2+k
2 jl(qr2)e

−(Q0+Qnl/n)r2. (47)

Integrals of the form

Jκ,l(q, ζ ) ≡
∫ ∞

0
dr rκjl(qr)e−ζ r (48)
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Table 1
Jκ,l(q, ζ ) ≡ ∫∞

0 dr rκe−ζ r jl(qr).

l J1,l J2,l J3,l J4,l

0
1

q2+ ζ2
2ζ

(q2 + ζ2)2
2(3ζ2 − q2)

(q2 + ζ2)3
24ζ(ζ2− q2)

(q2 + ζ2)4

1
2q

(q2 + ζ2)2
8qζ

(q2 + ζ2)3
8q(5ζ2 − q2)

(q2 + ζ2)4

2
8q2

(q2 + ζ2)3

48q2ζ

(q2 + ζ2)4

3
48q3

(q2 + ζ2)4

are easy to evaluate [7]. The first few of these integrals are shown in table 1. They obey
the recursion relation

Jκ+1,l(q, ζ ) = − ∂

∂ζ
Jκ,l(q, ζ ), (49)

and the integralsJl+1,l have the general form

Jl+1,l(q, ζ ) = 2l l!ql

(q2 + ζ 2)l+1
. (50)

Equations (49) and (50) allow us to generate all the needed integrals. The remain-
ing factor in equation (45) is

√
2

∫
d3x1 χ1s(x1)χ1s ′(x1) = 8

√
2(Q0Qnl)

3/2

(Q0+Qnl)3
. (51)

In equations (42)–(51),Qnl is the effective charge associated with the excited con-
figuration of the atom or ion. We can findQnl by solving the secular equation (30),
which reduces to

p0 = ZRν + T ′ν,ν . (52)

Whenn = 2 andl = 1, this becomes [5]

p0 = Z

√
1

1
+ 1

4
− 0.201897, (53)

so that

Q2,1 = p0

R2,1
= Z − 0.180582. (54)

In this example, equation (43) becomes:

χ21m(x2) = Y1m(x̂2)e
−Q2,1r2/2 2√

3

(
Q2,1

2

)5/2

r2, (55)
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so that, from (47)–(50),∫
d3x2 eiq·x2χ1s(x2)χ21m(x2) = 4

√
π ilY1m

(
q̂
)
Q

3/2
0

2√
3

(
Q2,1

2

)5/2 8qζ

(q2+ ζ 2)3
, (56)

where

ζ = Q0+ Q2,1

2
. (57)

Forn = 3 andl = 1 [5]

p0 = Z

√
1

1
+ 1

9
− 0.107540, (58)

so that the effective charge is given by

Q3,1 = p0

R3,1
= Z − 0.102021. (59)

The differential cross sections dσ21m/d% and dσ31m/d%, calculated in the way just
described, are exhibited in tables 2 and 3 for the 2-electron isoelectronic series. (The
cross sections are labeled with the subscript{nlm}.) Figures 1 and 2 show these cross
sections for He, fork = 100 andk = 150. One can see from these figures that ask

increases, the differential cross sections become more sharply peaked in the region of
small θ . Calculation of the total cross sections shows that they decrease with increas-
ing k. Figure 3 shows dσ210/d%, dσ310/d% and dσ410/d% for helium. One can see from
this figure that the differential cross sections for inelastic scattering of fast electrons de-
crease with increasing values ofn. The total cross sections decrease asZ increases and
also ask increases, as is illustrated in table 4.

For (L = 1, the inelastic scattering cross sections are very large at small values
of θ , while for other values of(L, the total cross sections are smaller and the differ-
ential cross sections are less sharply peaked at small values ofθ . This property can be
understood by considering equations (32) and (35), since we are considering the inelastic
scattering of fast electrons,(E/k2 � 1, and we can expand the square root in equa-
tion (35) as a Taylor series in this parameter. If we do this, making use of the identity
1− cosθ = 2 sin2(θ/2) we obtain

q2 ≈ 4(k2−(E) sin2(θ/2)+
(

(E

k

)2

cosθ. (60)

Thus, forθ � 1 we have the approximate relationship:

q2 ≈ k2θ2+
(

(E

k

)2

, (61)

where, from equations (9), (39) and (52),

(E ≈ 1

2

[(
ZR0+ T ′0,0

)2− (
ZRν + T ′ν,ν

)2
]
. (62)
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Table 2

dσ2,1,0

d%

dσ2,1,±1

d%

He
1.6474× 105k′ cos2 θq

kq2(q2+ 6.7455)6

8.2372× 104k′ sin2 θq

kq2(q2 + 6.7455)6

Li+ 1.4836× 107k′ cos2 θq

kq2(q2+ 16.787)6

7.4180× 106k′ sin2 θq

kq2(q2 + 16.787)6

Be2+ 3.2656× 108k′ cos2 θq

kq2(q2+ 31.329)6

1.6328× 108k′ sin2 θq

kq2(q2 + 31.329)6

B3+ 3.4511× 109k′ cos2 θq

kq2(q2+ 50.370)6

1.7256× 109k′ sin2 θq

kq2(q2 + 50.370)6

C4+ 2.3224× 1010k′ cos2 θq

kq2(q2+ 73.912)6

1.1612× 1010k′ sin2 θq

kq2(q2 + 73.912)6

N5+ 1.1509× 1011k′ cos2 θq

kq2(q2+ 101.95)6

5.7545× 1010k′ sin2 θq

kq2(q2 + 101.95)6

Table 3

dσ3,1,0

d%
= 2 cot2 θq

dσ3,1,±1

d%

He
7.3196× 104k′(q2 + 1.5079)2 cos2 θq

kq2(q2+ 5.3831)8

Li+ 6.0770× 106k′(q2 + 3.9324)2 cos2 θq

kq2(q2+ 13.348)8

Be2+ 1.2858× 108k′(q2 + 7.6703)2 cos2 θq

kq2(q2+ 24.868)8

B3+ 1.3274× 109k′(q2 + 12.529)2 cos2 θq

kq2(q2+ 39.944)8

C4+ 8.7958× 109k′(q2 + 18.574)2 cos2 θq

kq2(q2+ 58.576)8

N5+ 4.3114× 1010k′(q2 + 25.803)2 cos2 θq

kq2(q2+ 80.763)8

Equation (61) tells us that whenθ is very small,q is also small, and it is then valid
to expand the plane wave in (32) in a Taylor series:

eiq·xj = 1+ iq · xj − 1

2
(q · xj )

2+ · · · . (63)

The monopole term in this series vanishes in (32) because of the orthonormality between
ψ0 and ψν . When(L = 1 for a transition, it is “dipole allowed”, and the leading
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Figure 1. dσ2,1,0/d% for helium as a function of the angleθ betweenk andk′. Curve (a) corresponds to
k = 100, while (b) corresponds tok = 150. Atomic units are used throughout, except thatθ is expressed in

radians.

Figure 2. dσ2,1,±1/d% for helium as a function ofθ . Curve (a) corresponds tok = 100, while (b) corre-
sponds tok = 150.

Figure 3. This figure illustrates the decrease in magnitude of the differential cross sections for inelastic
scattering as the principal quantum number of the excited state increases. The figure shows dσ2,1,0/d%

(largest), dσ3,1,0/d% (smaller), and dσ4,1,0/d% (smallest) for helium withk = 100 atomic units.
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Table 4
Total cross sections in atomic units.

k σ2,1,±1(He) σ2,1,0(He) σ2,1,±1(Li+) σ2,1,0(Li+)

25 0.0037533 0.0013690 0.0011293 0.0005213
50 0.0011686 0.0003441 0.0003727 0.0001307
75 0.0005822 0.0001515 0.0001888 0.0000583

100 0.0003478 0.0000854 0.0001155 0.0000327
150 0.0001703 0.0000381 0.0000570 0.0000146
200 0.0001006 0.0000215 0.0000340 0.0000081

Figure 4. This figure illustrates the geometry ofk, the momentum of the incident fast electron,k′, its
momentum after inelastic scattering, andq, the momentum transfered to the scatterer.θ is the angle between
k andk′, while θq = arcsin(k′ sinθ/q) is the angle betweenq andk. Because of the inelasticity of the

process,k′ =
√

k2− 2(E is slightly smaller thank.

contribution to (32) comes from the the dipole term, iq ·xj , in (63). For small values ofq
the factor|∫ dx

∑
j eiq·xj ψ∗0ψν |2 in (32) is then proportional toq2. This means that for

small values ofθ andq, the cross sections corresponding to dipole-allowed transitions
are proportional toq−2, a factor which becomes extremely large in the forward direction.
By contrast,(L = 0 corresponds to a dipole-forbidden transition. In this case, the
leading term in the Taylor series is the quadrupole term, and|∫ dx

∑
j eiq·xj ψ∗0ψν|2 is

proportional toq4 whenq is small. This is sufficient to cancel theq−4 in the factor
(4k′/(kq4)), with the result that the total cross section is small, and the differential cross
section is less sharply peaked in the forward direction. Differential cross sections for
the 1-electron isoelectronic series are shown for comparison in table 5, and these cross
sections also exhibit the characteristics just discussed.

5. Discussion

The generalized Sturmian method provides an interesting and fresh alternative to
the usual SCF-CI methods for calculating the electronic structure and properties of atoms
and molecules. As we mentioned above, the method is a form of direct configuration
interaction, with a special prescription for the construction of optimum configurations.
In the present paper, we have used the single configuration approximation for the sake of
simplicity, but higher accuracy could be obtained by using more configurations. Usually
in a multiconfigurational generalized Sturmian calculation, a given degree of accuracy
can be obtained with far fewer configurations than are needed in conventional methods.
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Table 5
Cross sections for the 1-electron isoelectronic series.

n l m dσnlm/d%

2 0 0
128k′Z8

k[q2+ (3Z/2)2]6

2 1 0
288k′Z10cos2(θq)

kq2[q2+ (3Z/2)2]6

2 1 ±1
144k′Z10sin2(θq)

kq2[q2+ (3Z/2)2]6

3 0 0
1024k′Z8(3q2 + (4Z/3)2)2

243k[q2 + (4Z/3)2]8

3 1 0
8192k′Z10(3q2 + (4Z/3)2)2 cos2(θq)

729kq2[q2+ (4Z/3)2]8

3 1 ±1
4096k′Z10(3q2 + (4Z/3)2)2 sin2(θq)

729kq2[q2+ (4Z/3)2]8

3 2 0
32768k′Z12[1+ 3 cos(2θq )]2

19683k[q2 + (4Z/3)2]8

3 2 ±1
6552k′Z12sin2(2θq)

6561k[q2 + (4Z/3)2]8

3 2 ±2
6552k′Z12sin4(θq)

6561k[q2 + (4Z/3)2]8
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